Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Schizocardium karankawa sp. nov. has been collected from subtidal muds of the Laguna Madre, Texas, and the Mississippi coast, Gulf of Mexico. The Texas population is reproductive from early February to mid-April. Gametes are liberated by a small incision in a gonad. Oocyte germinal vesicle breakdown is increased in the presence of sperm, and the highest fertilization success was in the artificial seawater Jamarin U. Manually dechorionated embryos develop normally. Development was asynchronous via a tornaria larva, metamorphosis and maintained to the juvenile worm 6 gill-pore stage. Phalloidin-labeled late-stage tornaria revealed retractor muscles that connect the pericardial sac with the apical tuft anteriorly, the oesophagus ventrally, and muscle cells of the early mesocoels. The muscle development of early juvenile worms began with dorso-lateral trunk muscles, lateral trunk bands, and sphincters around the gill pores and anus. Adult worms are characterized by a stomochord that bifurcates anteriorly into paired vermiform processes, gill bars that extend almost the entire dorsal to ventral branchial region resulting in a narrow ventral hypobranchial ridge, and an elaborate epibranchial organ with six zones of discrete cell types. The trunk has up to three rows of liver sacs, and lateral gonads. The acorn worm evo-devo model species Saccoglossus kowalevskii , Ptychodera flava , and Schizocardium californicum are phylogenetically distant with disparate life histories. S. karnakawa from S. californicum are phylogenetically close, and differences between them that become apparent as adult worms include the number of gill pores and hepatic sacs, and elaborations of the heart–kidney–stomochord complex. An important challenge for evolutionary developmental biology is to form links from phylogenetically distant and large-scale differences to phylogenetically close and small-scale differences. This description of the embryology, development, and adult morphology of S. karankawa permits investigations into how acorn worm development evolves at fine scales.more » « less
-
Hydractiniais a colonial marine hydroid that shows remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of twoHydractiniaspecies,Hydractinia symbiolongicarpusandHydractinia echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult maleH. symbiolongicarpusand identified cell-type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed thatHydractinia’s i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given thatHydractiniahas a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate thatHydractinia’s stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources forHydractiniapresented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from nonself.more » « less
-
Hydractinia is a colonial marine hydroid that exhibits remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two Hydractinia species, H. symbiolongicarpus and H. echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male H. symbiolongicarpus and identified cell type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed that Hydractinia's i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given that Hydractinia has a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate that Hydractinia's stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources for Hydractinia presented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from non-self.more » « less
-
Neurogenesis is the generation of neurons from stem cells, a process that is regulated by SoxB transcription factors (TFs) in many animals. Although the roles of these TFs are well understood in bilaterians, how their neural function evolved is unclear. Here, we use Hydractinia symbiolongicarpus , a member of the early-branching phylum Cnidaria, to provide insight into this question. Using a combination of mRNA in situ hybridization, transgenesis, gene knockdown, transcriptomics, and in vivo imaging, we provide a comprehensive molecular and cellular analysis of neurogenesis during embryogenesis, homeostasis, and regeneration in this animal. We show that SoxB genes act sequentially at least in some cases. Stem cells expressing Piwi1 and Soxb1 , which have broad developmental potential, become neural progenitors that express Soxb2 before differentiating into mature neural cells. Knockdown of SoxB genes resulted in complex defects in embryonic neurogenesis. Hydractinia neural cells differentiate while migrating from the aboral to the oral end of the animal, but it is unclear whether migration per se or exposure to different microenvironments is the main driver of their fate determination. Our data constitute a rich resource for studies aiming at addressing this question, which is at the heart of understanding the origin and development of animal nervous systems.more » « less
An official website of the United States government

Full Text Available